Skip to content

Data Engineering Quest

ETL Processing on Google Cloud Using Dataflow and BigQuery

ETL Processing using Dataflow and BigQuery

data_ingestion.py

# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""`data_ingestion.py` is a Dataflow pipeline which reads a file and writes its
contents to a BigQuery table.
This example does not do any transformation on the data.
"""


import argparse
import logging
import re
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions


class DataIngestion:
    """A helper class which contains the logic to translate the file into
    a format BigQuery will accept."""
    def parse_method(self, string_input):
        """This method translates a single line of comma separated values to a
        dictionary which can be loaded into BigQuery.

        Args:
            string_input: A comma separated list of values in the form of
                state_abbreviation,gender,year,name,count_of_babies,dataset_created_date
                Example string_input: KS,F,1923,Dorothy,654,11/28/2016

        Returns:
            A dict mapping BigQuery column names as keys to the corresponding value
            parsed from string_input. In this example, the data is not transformed, and
            remains in the same format as the CSV.
            example output:
            {
                'state': 'KS',
                'gender': 'F',
                'year': '1923',
                'name': 'Dorothy',
                'number': '654',
                'created_date': '11/28/2016'
            }
         """
        # Strip out carriage return, newline and quote characters.
        values = re.split(",",
                          re.sub('\r\n', '', re.sub('"', '', string_input)))
        row = dict(
            zip(('state', 'gender', 'year', 'name', 'number', 'created_date'),
                values))
        return row


def run(argv=None):
    """The main function which creates the pipeline and runs it."""

    parser = argparse.ArgumentParser()

    # Here we add some specific command line arguments we expect.
    # Specifically we have the input file to read and the output table to write.
    # This is the final stage of the pipeline, where we define the destination
    # of the data. In this case we are writing to BigQuery.
    parser.add_argument(
        '--input',
        dest='input',
        required=False,
        help='Input file to read. This can be a local file or '
        'a file in a Google Storage Bucket.',
        # This example file contains a total of only 10 lines.
        # Useful for developing on a small set of data.
        default='gs://spls/gsp290/data_files/head_usa_names.csv')

    # This defaults to the lake dataset in your BigQuery project. You'll have
    # to create the lake dataset yourself using this command:
    # bq mk lake
    parser.add_argument('--output',
                        dest='output',
                        required=False,
                        help='Output BQ table to write results to.',
                        default='lake.usa_names')

    # Parse arguments from the command line.
    known_args, pipeline_args = parser.parse_known_args(argv)

    # DataIngestion is a class we built in this script to hold the logic for
    # transforming the file into a BigQuery table.
    data_ingestion = DataIngestion()

    # Initiate the pipeline using the pipeline arguments passed in from the
    # command line. This includes information such as the project ID and
    # where Dataflow should store temp files.
    p = beam.Pipeline(options=PipelineOptions(pipeline_args))

    (p
     # Read the file. This is the source of the pipeline. All further
     # processing starts with lines read from the file. We use the input
     # argument from the command line. We also skip the first line which is a
     # header row.
     | 'Read from a File' >> beam.io.ReadFromText(known_args.input,
                                                  skip_header_lines=1)
     # This stage of the pipeline translates from a CSV file single row
     # input as a string, to a dictionary object consumable by BigQuery.
     # It refers to a function we have written. This function will
     # be run in parallel on different workers using input from the
     # previous stage of the pipeline.
     | 'String To BigQuery Row' >>
     beam.Map(lambda s: data_ingestion.parse_method(s))
     | 'Write to BigQuery' >> beam.io.Write(
         beam.io.BigQuerySink(
             # The table name is a required argument for the BigQuery sink.
             # In this case we use the value passed in from the command line.
             known_args.output,
             # Here we use the simplest way of defining a schema:
             # fieldName:fieldType
             schema='state:STRING,gender:STRING,year:STRING,name:STRING,'
             'number:STRING,created_date:STRING',
             # Creates the table in BigQuery if it does not yet exist.
             create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
             # Deletes all data in the BigQuery table before writing.
             write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE)))
    p.run().wait_until_finish()


if __name__ == '__main__':
    logging.getLogger().setLevel(logging.INFO)
    run()

run the script

python dataflow_python_examples/data_ingestion.py --project=$PROJECT --region=us-central1 --runner=DataflowRunner --staging_location=gs://$PROJECT/test --temp_location gs://$PROJECT/test --input gs://$PROJECT/data_files/head_usa_names.csv --save_main_session

data_transformation.py

# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" data_transformation.py is a Dataflow pipeline which reads a file and writes
its contents to a BigQuery table.

This example reads a json schema of the intended output into BigQuery,
and transforms the date data to match the format BigQuery expects.
"""


import argparse
import csv
import logging
import os

import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.io.gcp.bigquery_tools import parse_table_schema_from_json


class DataTransformation:
    """A helper class which contains the logic to translate the file into a
  format BigQuery will accept."""

    def __init__(self):
        dir_path = os.path.dirname(os.path.realpath(__file__))
        self.schema_str = ''
        # Here we read the output schema from a json file.  This is used to specify the types
        # of data we are writing to BigQuery.
        schema_file = os.path.join(dir_path, 'resources', 'usa_names_year_as_date.json')
        with open(schema_file) \
                as f:
            data = f.read()
            # Wrapping the schema in fields is required for the BigQuery API.
            self.schema_str = '{"fields": ' + data + '}'

    def parse_method(self, string_input):
        """This method translates a single line of comma separated values to a
    dictionary which can be loaded into BigQuery.

        Args:
            string_input: A comma separated list of values in the form of
            state_abbreviation,gender,year,name,count_of_babies,dataset_created_date
                example string_input: KS,F,1923,Dorothy,654,11/28/2016

        Returns:
            A dict mapping BigQuery column names as keys to the corresponding value
            parsed from string_input.  In this example, the data is not transformed, and
            remains in the same format as the CSV.  There are no date format transformations.

                example output:
                      {'state': 'KS',
                       'gender': 'F',
                       'year': '1923-01-01', <- This is the BigQuery date format.
                       'name': 'Dorothy',
                       'number': '654',
                       'created_date': '11/28/2016'
                       }
        """
        # Strip out return characters and quote characters.
        schema = parse_table_schema_from_json(self.schema_str)

        field_map = [f for f in schema.fields]

        # Use a CSV Reader which can handle quoted strings etc.
        reader = csv.reader(string_input.split('\n'))
        for csv_row in reader:
            # Our source data only contains year, so default January 1st as the
            # month and day.
            month = '01'
            day = '01'
            # The year comes from our source data.
            year = csv_row[2]

            row = {}
            i = 0
            # Iterate over the values from our csv file, applying any transformation logic.
            for value in csv_row:
                # If the schema indicates this field is a date format, we must
                # transform the date from the source data into a format that
                # BigQuery can understand.
                if field_map[i].type == 'DATE':
                    # Format the date to YYYY-MM-DD format which BigQuery
                    # accepts.
                    value = '-'.join((year, month, day))

                row[field_map[i].name] = value
                i += 1

            return row


def run(argv=None):
    """The main function which creates the pipeline and runs it."""
    parser = argparse.ArgumentParser()
    # Here we add some specific command line arguments we expect.   Specifically
    # we have the input file to load and the output table to write to.
    parser.add_argument(
        '--input', dest='input', required=False,
        help='Input file to read.  This can be a local file or '
             'a file in a Google Storage Bucket.',
        # This example file contains a total of only 10 lines.
        # It is useful for developing on a small set of data
        default='gs://spls/gsp290/data_files/head_usa_names.csv')
    # This defaults to the temp dataset in your BigQuery project.  You'll have
    # to create the temp dataset yourself using bq mk temp
    parser.add_argument('--output', dest='output', required=False,
                        help='Output BQ table to write results to.',
                        default='lake.usa_names_transformed')

    # Parse arguments from the command line.
    known_args, pipeline_args = parser.parse_known_args(argv)
    # DataTransformation is a class we built in this script to hold the logic for
    # transforming the file into a BigQuery table.
    data_ingestion = DataTransformation()

    # Initiate the pipeline using the pipeline arguments passed in from the
    # command line.  This includes information like where Dataflow should
    # store temp files, and what the project id is.
    p = beam.Pipeline(options=PipelineOptions(pipeline_args))
    schema = parse_table_schema_from_json(data_ingestion.schema_str)

    (p
     # Read the file.  This is the source of the pipeline.  All further
     # processing starts with lines read from the file.  We use the input
     # argument from the command line.  We also skip the first line which is a
     # header row.
     | 'Read From Text' >> beam.io.ReadFromText(known_args.input,
                                                skip_header_lines=1)
     # This stage of the pipeline translates from a CSV file single row
     # input as a string, to a dictionary object consumable by BigQuery.
     # It refers to a function we have written.  This function will
     # be run in parallel on different workers using input from the
     # previous stage of the pipeline.
     | 'String to BigQuery Row' >> beam.Map(lambda s:
                                            data_ingestion.parse_method(s))
     | 'Write to BigQuery' >> beam.io.Write(
        beam.io.BigQuerySink(
            # The table name is a required argument for the BigQuery sink.
            # In this case we use the value passed in from the command line.
            known_args.output,
            # Here we use the JSON schema read in from a JSON file.
            # Specifying the schema allows the API to create the table correctly if it does not yet exist.
            schema=schema,
            # Creates the table in BigQuery if it does not yet exist.
            create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
            # Deletes all data in the BigQuery table before writing.
            write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE)))
    p.run().wait_until_finish()


if __name__ == '__main__':
    logging.getLogger().setLevel(logging.INFO)
    run()

data_enrichment.py

# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and# limitations under the License.
""" data_enrichment.py demonstrates a Dataflow pipeline which reads a file and
 writes its contents to a BigQuery table.  Along the way, data from BigQuery is read in as a side input and joined in with the primary data from the file.
"""
import argparse
import csvimport logging
import osimport sys

import apache_beam as beam
from apache_beam.io.gcp import bigquery
from apache_beam.io.gcp.bigquery import parse_table_schema_from_json
from apache_beam.options.pipeline_options import PipelineOptionsfrom apache_beam.pvalue import AsDict


class DataIngestion(object):
    """A helper class which contains the logic to translate the file into a
  format BigQuery will accept."""

    def __init__(self):
        dir_path = os.path.dirname(os.path.realpath(__file__))
        self.schema_str = ''
        # This is the schema of the destination table in BigQuery.
        schema_file = os.path.join(dir_path, 'resources', 'usa_names_with_full_state_name.json')
        with open(schema_file) \
                as f:
            data = f.read()
            # Wrapping the schema in fields is required for the BigQuery API.
            self.schema_str = '{"fields": ' + data + '}'

    def parse_method(self, string_input):
        """This method translates a single line of comma separated values to a
    dictionary which can be loaded into BigQuery.

        Args:
            string_input: A comma separated list of values in the form of
            state_abbreviation,gender,year,name,count_of_babies,dataset_created_date
                example string_input: KS,F,1923,Dorothy,654,11/28/2016

        Returns:
            A dict mapping BigQuery column names as keys to the corresponding value
            parsed from string_input.  In this example, the data is not transformed, and
            remains in the same format as the CSV.  There are no date format transformations.

                example output:
                      {'state': 'KS',
                       'gender': 'F',
                       'year': '1923-01-01', <- This is the BigQuery date format.
                       'name': 'Dorothy',
                       'number': '654',
                       'created_date': '11/28/2016'
                       }

     """
        # Strip out return characters and quote characters.
        schema = bigquery.parse_table_schema_from_json(self.schema_str)

        field_map = [f for f in schema.fields]

        # Use a CSV Reader which can handle quoted strings etc.
        reader = csv.reader(string_input.split('\n'))
        for csv_row in reader:
            if (sys.version_info.major < 3.0):
                values = [x.decode('utf8') for x in csv_row]
            else:
                values = csv_row
            # Our source data only contains year, so default January 1st as the
            # month and day.
            month = '01'
            day = '01'
            # The year comes from our source data.
            year = values[2]
            row = {}
            i = 0
            # Iterate over the values from our csv file, applying any transformation logic.
            for value in values:
                # If the schema indicates this field is a date format, we must
                # transform the date from the source data into a format that
                # BigQuery can understand.
                if field_map[i].type == 'DATE':
                    # Format the date to YYYY-MM-DD format which BigQuery
                    # accepts.
                    value = '-'.join((year, month, day))

                row[field_map[i].name] = value
                i += 1

            return row


def run(argv=None):
    """The main function which creates the pipeline and runs it."""
    parser = argparse.ArgumentParser()
    # Here we add some specific command line arguments we expect.   Specifically
    # we have the input file to load and the output table to write to.
    parser.add_argument(
        '--input', dest='input', required=False,
        help='Input file to read.  This can be a local file or '
             'a file in a Google Storage Bucket.',
        # This example file contains a total of only 10 lines.
        # Useful for quickly debugging on a small set of data
        default='gs://spls/gsp290/data_files/head_usa_names.csv')
    # The output defaults to the lake dataset in your BigQuery project.  You'll have
    # to create the lake dataset yourself using this command:
    # bq mk lake
    parser.add_argument('--output', dest='output', required=False,
                        help='Output BQ table to write results to.',
                        default='lake.usa_names_enriched')

    # Parse arguments from the command line.
    known_args, pipeline_args = parser.parse_known_args(argv)

    # DataIngestion is a class we built in this script to hold the logic for
    # transforming the file into a BigQuery table.
    data_ingestion = DataIngestion()

    # Initiate the pipeline using the pipeline arguments passed in from the
    # command line.  This includes information like where Dataflow should store
    #  temp files, and what the project id is
    p = beam.Pipeline(options=PipelineOptions(pipeline_args))
    schema = parse_table_schema_from_json(data_ingestion.schema_str)

    # This function adds in a full state name by looking up the
    # full name in the short_to_long_name_map.  The short_to_long_name_map
    # comes from a read from BigQuery in the next few lines
    def add_full_state_name(row, short_to_long_name_map):
        row['state_full_name'] = short_to_long_name_map[row['state']]
        return row

    # This is a second source of data.  The source is from BigQuery.
    # This will come into our pipeline a side input.

    read_query = """
    SELECT
    name as state_name,
    abbreviation as state_abbreviation
    FROM
    `qwiklabs-resources.python_dataflow_example.state_abbreviations`"""

    state_abbreviations = (
        p
        | 'Read from BigQuery' >> beam.io.Read(
            beam.io.BigQuerySource(query=read_query, use_standard_sql=True))
        # We must create a python tuple of key to value pairs here in order to
        # use the data as a side input.  Dataflow will use the keys to distribute the
        # work to the correct worker.
        | 'Abbreviation to Full Name' >> beam.Map(
            lambda row: (row['state_abbreviation'], row['state_name'])))

    (p
     # Read the file.  This is the source of the pipeline.  All further
     # processing starts with lines read from the file.  We use the input
     # argument from the command line.  We also skip the first line which is
     # a header row.
     | 'Read From Text' >> beam.io.ReadFromText(known_args.input,
                                                skip_header_lines=1)
     # Translates from the raw string data in the CSV to a dictionary.
     # The dictionary is a keyed by column names with the values being the values
     # we want to store in BigQuery.
     | 'String to BigQuery Row' >> beam.Map(lambda s:
                                            data_ingestion.parse_method(s))
     # Here we pass in a side input, which is data that comes from outside our
     # CSV source.  The side input contains a map of states to their full name.
     | 'Join Data' >> beam.Map(add_full_state_name, AsDict(
        state_abbreviations))
     # This is the final stage of the pipeline, where we define the destination
     #  of the data.  In this case we are writing to BigQuery.
     | 'Write to BigQuery' >> beam.io.Write(
        beam.io.BigQuerySink(
            # The table name is a required argument for the BigQuery sink.
            # In this case we use the value passed in from the command line.
            known_args.output,
            # Here we use the JSON schema read in from a JSON file.
            # Specifying the schema allows the API to create the table correctly if it does not yet exist.
            schema=schema,
            # Creates the table in BigQuery if it does not yet exist.
            create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
            # Deletes all data in the BigQuery table before writing.
            write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE)))
    p.run().wait_until_finish()


if __name__ == '__main__':
    logging.getLogger().setLevel(logging.INFO)
    run()

run script

python dataflow_python_examples/data_enrichment.py --project=$PROJECT --region=us-central1 --runner=DataflowRunner --staging_location=gs://$PROJECT/test --temp_location gs://$PROJECT/test --input gs://$PROJECT/data_files/head_usa_names.csv --save_main_session

data_lake_to_mart.py



run script

python dataflow_python_examples/data_lake_to_mart.py --worker_disk_type="compute.googleapis.com/projects//zones//diskTypes/pd-ssd" --max_num_workers=4 --project=$PROJECT --runner=DataflowRunner --staging_location=gs://$PROJECT/test --temp_location gs://$PROJECT/test --save_main_session --region=us-central1

Building an IoT Analytics Pipline on Google Cloud

Building an IoT Analytics Pipeline on Google Cloud Qwiklab

Cloud Composer: Copying BigQuery Tables Across Different Locations

Cloud Composer: Copying BigQuery Tables Across Different Locations Qwiklab

bq_copy_across_locations.py

location

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Example Airflow DAG that performs an export from BQ tables listed in
config file to GCS, copies GCS objects across locations (e.g., from US to
EU) then imports from GCS to BQ. The DAG imports the gcs_to_gcs operator
from plugins and dynamically builds the tasks based on the list of tables.
Lastly, the DAG defines a specific application logger to generate logs.
This DAG relies on three Airflow variables
(https://airflow.apache.org/concepts.html#variables):
* table_list_file_path - CSV file listing source and target tables, including
Datasets.
* gcs_source_bucket - Google Cloud Storage bucket to use for exporting
BigQuery tables in source.
* gcs_dest_bucket - Google Cloud Storage bucket to use for importing
BigQuery tables in destination.
See https://cloud.google.com/storage/docs/creating-buckets for creating a
bucket.
"""

# --------------------------------------------------------------------------------
# Load The Dependencies
# --------------------------------------------------------------------------------

import csv
import datetime
import io
import logging

from airflow import models
from airflow.contrib.operators import bigquery_to_gcs
from airflow.contrib.operators import gcs_to_bq
from airflow.contrib.operators import gcs_to_gcs
from airflow.operators import dummy_operator


# --------------------------------------------------------------------------------
# Set default arguments
# --------------------------------------------------------------------------------

yesterday = datetime.datetime.now() - datetime.timedelta(days=1)

default_args = {
    'owner': 'airflow',
    'start_date': yesterday,
    'depends_on_past': False,
    'email': [''],
    'email_on_failure': False,
    'email_on_retry': False,
    'retries': 1,
    'retry_delay': datetime.timedelta(minutes=5),
}

# --------------------------------------------------------------------------------
# Set variables
# --------------------------------------------------------------------------------

# 'table_list_file_path': This variable will contain the location of the master
# file.
table_list_file_path = models.Variable.get('table_list_file_path')

# Source Bucket
source_bucket = models.Variable.get('gcs_source_bucket')

# Destination Bucket
dest_bucket = models.Variable.get('gcs_dest_bucket')

# --------------------------------------------------------------------------------
# Set GCP logging
# --------------------------------------------------------------------------------

logger = logging.getLogger('bq_copy_us_to_eu_01')

# --------------------------------------------------------------------------------
# Functions
# --------------------------------------------------------------------------------


def read_table_list(table_list_file):
    """
    Reads the table list file that will help in creating Airflow tasks in
    the DAG dynamically.
    :param table_list_file: (String) The file location of the table list file,
    e.g. '/home/airflow/framework/table_list.csv'
    :return table_list: (List) List of tuples containing the source and
    target tables.
    """
    table_list = []
    logger.info('Reading table_list_file from : %s' % str(table_list_file))
    try:
        with io.open(table_list_file, 'rt', encoding='utf-8') as csv_file:
            csv_reader = csv.reader(csv_file)
            next(csv_reader)  # skip the headers
            for row in csv_reader:
                logger.info(row)
                table_tuple = {
                    'table_source': row[0],
                    'table_dest': row[1]
                }
                table_list.append(table_tuple)
            return table_list
    except IOError as e:
        logger.error('Error opening table_list_file %s: ' % str(
            table_list_file), e)


# --------------------------------------------------------------------------------
# Main DAG
# --------------------------------------------------------------------------------

# Define a DAG (directed acyclic graph) of tasks.
# Any task you create within the context manager is automatically added to the
# DAG object.
with models.DAG(
        'composer_sample_bq_copy_across_locations',
        default_args=default_args,
        schedule_interval=None) as dag:
    start = dummy_operator.DummyOperator(
        task_id='start',
        trigger_rule='all_success'
    )

    end = dummy_operator.DummyOperator(
        task_id='end',
        trigger_rule='all_success'
    )

    # Get the table list from master file
    all_records = read_table_list(table_list_file_path)

    # Loop over each record in the 'all_records' python list to build up
    # Airflow tasks
    for record in all_records:
        logger.info('Generating tasks to transfer table: {}'.format(record))

        table_source = record['table_source']
        table_dest = record['table_dest']

        BQ_to_GCS = bigquery_to_gcs.BigQueryToCloudStorageOperator(
            # Replace ":" with valid character for Airflow task
            task_id='{}_BQ_to_GCS'.format(table_source.replace(":", "_")),
            source_project_dataset_table=table_source,
            destination_cloud_storage_uris=['{}-*.avro'.format(
                'gs://' + source_bucket + '/' + table_source)],
            export_format='AVRO'
        )

        GCS_to_GCS = gcs_to_gcs.GoogleCloudStorageToGoogleCloudStorageOperator(
            # Replace ":" with valid character for Airflow task
            task_id='{}_GCS_to_GCS'.format(table_source.replace(":", "_")),
            source_bucket=source_bucket,
            source_object='{}-*.avro'.format(table_source),
            destination_bucket=dest_bucket,
            # destination_object='{}-*.avro'.format(table_dest)
        )

        GCS_to_BQ = gcs_to_bq.GoogleCloudStorageToBigQueryOperator(
            # Replace ":" with valid character for Airflow task
            task_id='{}_GCS_to_BQ'.format(table_dest.replace(":", "_")),
            bucket=dest_bucket,
            source_objects=['{}-*.avro'.format(table_source)],
            destination_project_dataset_table=table_dest,
            source_format='AVRO',
            write_disposition='WRITE_TRUNCATE',
            autodetect=True
        )

        start >> BQ_to_GCS >> GCS_to_GCS >> GCS_to_BQ >> end

Creating a Data Transform Pipeline with Cloud Dataprep

Creating a Data Transform Pipeline with Cloud Dataprep Qwiklab

Predict Housing Prices with Tensorflow and AI platform

Predict Housing Prices with Tensorflow and AI platform

Predict Visitor Purchases with a Classification model

Predict Visitor Purchases with a Classification model Qwiklab